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The process of  heat propagation in a porous solid for evaporative cooling o f  a plate, a cylinder, and a 
sphere is analyzed. 

The question of  the analytic calculation of  the process of  porous cooling has still not been sufficiently explored in 
the technical literature. Only problems of  plates and cylinders [1-7] with fixed temperatures at the cold and hot surfaces 
have been examined. 

Here the temperature distribution in a solid porous wall with a flow of liquid or gas to the hot surface is analytical- 

ly investigated for three different bodies - an infinite plate, a thin-walled cylindrical tube, and a thin-walled hollow 

sphere. It is assumed that in the two latter cases the cooling component flows uniformly in the direction from th e  axis of 
the cylinder and the center of sphere to the walls. We shall adopt the mechanism of interaction between the skeleton of 
the solid and the fluid proposed in [1]. The real capillary structure of the solid is replaced by an equivalent system con- 
sisting of uniform parallel cylindrical channels through which the cooling liquid or gas flows. The temperatures of  skele- 
ton and coolant are assumed to be identical at every point. It is also assumed that heat transfer within the specimen 
takes place by heat conduction in the skeleton and the coolant. The coefficients ks, k L and C L and the density of the 
liquid are assumed constant. 

We shall set up the differential equation describing the process in question by equating the quantity of  heat  accu- 
mulating in a element of volume of  the body due to heat conduction with the quantity of heat  that goes into changing 
the enthalpy of the liquid. For the thin-walled cylinder and sphere, the flux density Jm over the thickness of  the wall is 
assumed constant. In the case of  a one-dimensional temperature field and symmetrical  steady-state heat transfer we ob- 
tain the following differential equation, which must be satisfied by the temperature of  the porous solid: 

d ~ ~q d~] ~q 

In Eq. (1), the terms with the multiplier ~w = JmCL/keffcharac ter ize thechangeinenthalpy  of  the liquid, the 
other two terms determine the heat  conductivity of the porous body. 

For evaporative porous cooling the boundary conditions take the following form: 

t = t l  for ~ X = - -  ~ (plate), 

t = b I for "q ~ r ----- r 1 (cylinder and sphere), (2) 

~ .A t= )~e f f  . Plm for ~ q - - - - - x = - - g ,  " ~ r - - - - - t l ,  (3) 

where At = t s - tg; k f  if the effective thermal conductivity of  the solid and liquid phases occupying the volume of  the 
body (keff = ks(1 - P) + XLp ). 

According to (3), the heat supplied to the hot surface of  the wall is spent on warming up the body by heat conduc- 
tion and on varporizing l iquid.  If we take the gas as the inert component transmitted through the porous wall, its ther- 
mal conductivity can be neglected when k s >> k L. Then Left = ks(1 - P). Furthermore, PJm = 0. 

On solving differential equation (1) with boundary conditions (2) and (3) for a plate, a cylinder, and a sphere, re- 
spectively, we obtain 

tp l=  (~w~ef'f -1 [exp (~wx) - -  

- - e x p ( - - ~ ) ]  ( a A t - -  p],~), --~ --%x ~ O, (4) 

tcyl=, tl exp [~,(r -- rO] (I -- ~-~, lexp ~r~) § 

+ (~,eft~)- 1 e x p ( ~ r ) ( ~ A t - -  ~]m) I, rx ~ r <- r~, (5) 
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t sph=q(1 - - . '  l ~ , l ,  e x p ~ , r 2 ) e x p [ } ~ ( r _ q ) l q _  

1,,,)I e x p ( ~ r ) ,  r l  ,.z r <~ r.,, -t- ()~efr - 1  (TA t - -  p . . . .  (6) 

where 

* ,) 

---= } =, I~ e x p ( ~ ~ r,_,) -I- K2, ~ :": = ~. ~, I1 e x p (~ ~ G)  @ K_;, 

l =  .i[r e x p ( ~  r)]-l dr = Ez (-- ~ r )  - -  Ei (--  ~.rl), 
gl 

["" = i [r~ e x p  (~wl')] - 1  dr -~- [rl  e x p  (~,rl)]  -1 - -  [r e x p  (~, r ) ]  -1  - -  

- -  }.~ [Ei ( - -  ~r)  - -  E i ( - -  ~.~rl)], 
T2 f 2  

11 = ; [r exp ~ - 1  (~r)] dr, I~= j~[r~exp(~,r)]-l dr, 
r l  f l  

Ei(~ ) is the  i n t e g r o - e x p o n e n t t a l  funct ion t abu la t ed  in [8]. 

In a number  of  p r a c t i c a l  cases i t  is necessary  to c a l c u l a t e  the  t empe ra tu r e  of  the wal l  t t on the cold  s ide  a n a l y t i -  
ca l ly .  Accord ing ly ,  we set up the  hea t  b a l a n c e  for the  regions - . o  - x -< - 5  (p t a t e )  and 0 - r -< r~ (cyl inder  and sphere),  
as a resul t  of  which we ob ta in  the  fol lowing d i f fe ren t i a l  equat ion ,  which  must  be  sat isf ied by  the  t e m p e r a t u r e  of  the  in -  
c iden t  flow: 

d2tL dt L 7i F -  @ ( r  lrtF--1 - -~ . )  - -  - -  O, 
d ~4 ~ d ~q 

U) 

where g = JCL/K L. 

The values  of  J (for a p la t e  Jpl = Jm'  for a cy l inder  Jc" 1 = Jm r1' and for a sphere Jsph = j ~ r i  ) are  cha rac t e r i zed ,  
r e spec t ive ly ,  by the  flux dens i ty  per uni t  a rea  and per uni t  l~ngth and by the t o t a l  mass flow r a t e  of  the  coo l ing  c o m p o -  
nent .  The  p a r a m e t e r  J~n is d e t e r m i n e d  by the flow of  l iquid  in the  sec t ion  for r = h .  

Boundary condi t ions  for (7) can be  represented  in the  form 

r = to for x = - -  co (pla te) ,  (8) 

tL = t o for r - -  0 (cy l inder  and sphere),  

%L dtL dt for "q ~ x : - -  ~, ~q ~ r : 0. (9) 
d ~q : ~'eff d ~q 

The  l a t t e r  cond i t ion  assumes equa l i ty  of  the  hea t  fluxes at  the  phase in te r face ,  i. e . ,  a t  the  boundary of con tac t  
be tween the l iquid  and the f ree  surface o f  the  body.  

The  solut ion of  (7) with boundary condi t ions  (8) and (9) is: 

~Lpl= ({xh t - -p]s  (~L ~n) -1 exp [}pl(X+ g) - -  }~gl =- to, 

tLcyl-- A -1 (r/rl)~cyl[~,eff~o h(rl ~ - -  exp i~,/X r) + 

+ , . a t - - p ] ; l  + to, 

tLsph = (A*) -1 exp (--  ~sph/r) [)Vef~t~ (r~ '~* -- 

- - e x p ~ A r ) - ~  a h t - -  Pjm] @to, 

(io) 

(11) 

(12) 

where 

~pl=JplCL/)~L, ~cyl=JcylCL/~,L, ~:sph= JsphCL/~.L, 

A = )~L ~cyl~,  A* = e x p  ( - -  ~L/f l )  ;k, L ~:sph ~*. 
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Taking into account that tLIx=_6 = t l  (plate) ,  and tLlr=0 = t l  (cylinder and sphere), from (10),(12) we find the 

temperature  t t for the three bodies investigated: 

t : p l =  (~pl s  (a A t  - -  Pjm) exp ( - -  g~;) + to, (13) 

t :cy l  - -  (( ~.L:~cylto-[- ~A t - -  p ira) [ ~w~eff e x p(~= A r)]-1, (14) 

hsph---- (~*s gspht04-=~ t - -  p j,~) [g~ ~effexp(g~a r)]- '  . (15) 

Thus, the value of t, in (4)-(6) can be determined from relations (18)-(18). 

From an analysis of  solutions (4)-(6) and (18)-(18) i t  follows that for large values of  the hea t  capaci ty  of the l iquid 
(C L ~ ~o) the temperature  of  the plate,  th in-wal led  cylinder,  or sphere approaches the temperature  of  the cooling liquid 

(gas) t o . 

The temperature  of  the wall  tends to t o i f  Jm -'~ ~; however, in this case, as follows from boundary condition (3) 
and the solutions for t and t 1, an abrupt temperature change occurs at the hot surface of  the body. When Xf + % for the 

temperature  of  the wall  we have 

t p l =  to "t- ~, tcyl  = t o  r l  + u tsph = to -q_ y, 
/'2 

where y -- ( a ~ t  - pjm)/CLJm. 

NOTATION 

- space coordinate; F - constant (for an infini te  p la te  F ; 0; ~ - x: for an infini te  cylinder F = 1, ~ - r; for a 

sphere I" = 2, ~ - r); 6 - thickness of plate;  t s, t z, t 2 - respect ively,  temperature  of  surrounding medium and wall  on 
cold and hot sides; t o - temperature of  cooling liquid at  an infini te distance from cold surface of  plate,  on axis of  cy l in -  
der or at center of sphere; p - hea t  of  vaporization; k s and X L - thermal  conductivit ies of skeleton of  solid and cooling 
liquid, respectively;  P - porosity of body; r l  and r~ - inside and outside radi i  of  cyl inder  and sphere, respectively;  K = 

= llr. 
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